Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Int Immunopharmacol ; 120: 110333, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2316548

ABSTRACT

BACKGROUND: The differences in host antiviral gene expression and disease severity between vaccinated and non-vaccinated coronavirus disease 2019 (COVID-19) patients are not well characterized. We sought to compare the clinical characteristics and host antiviral gene expression patterns of vaccinated and non-vaccinated cohorts at the Second People's Hospital of Fuyang City. METHODS: In this case-control study, we retrospectively analyzed 113 vaccinated patients with a COVID-19 Omicron variant infection, 46 non-vaccinated COVID-19 patients, and 24 healthy subjects (no history of COVID-19) recruited from the Second People's Hospital of Fuyang City. Blood samples were collected from each study participant for RNA extraction and PCR. We compared host antiviral gene expression profiles between healthy controls and COVID-19 patients who were either vaccinated or non-vaccinated at the time of infection. RESULTS: In the vaccinated group, most patients were asymptomatic, with only 42.9 % of patients developing fever. Notably, no patients had extrapulmonary organ damage. In contrast, 21.4 % of patients in the non-vaccinated group developed severe/critical (SC) disease and 78.6 % had mild/moderate (MM) disease, with fever occurring in 74.2 % patients. We found that Omicron infection in COVID-19 vaccinated patients was associated with significantly increased expression of several important host antiviral genes including IL12B, IL13, CXCL11, CXCL9, IFNA2, IFNA1, IFNγ, and TNFα. CONCLUSION: Vaccinated patients infected with the Omicron variant were mostly asymptomatic. In contrast, non-vaccinated patients frequently developed SC or MM disease. Older patients with SC COVID-19 also had a higher occurrence of mild liver dysfunction. Omicron infection in COVID-19 vaccinated patients was associated with the activation of key host antiviral genes and thus may play a role in reducing disease severity.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Case-Control Studies , Retrospective Studies , COVID-19/epidemiology , SARS-CoV-2 , China/epidemiology , Vaccination , Disease Outbreaks , Fever , Gene Expression
2.
Front Immunol ; 13: 976512, 2022.
Article in English | MEDLINE | ID: covidwho-2320841

ABSTRACT

COVID-19 prognoses suggests that a proportion of patients develop fibrosis, but there is no evidence to indicate whether patients have progression of mesenchymal transition (MT) in the lungs. The role of MT during the COVID-19 pandemic remains poorly understood. Using single-cell RNA sequencing, we profiled the transcriptomes of cells from the lungs of healthy individuals (n = 45), COVID-19 patients (n = 58), and idiopathic pulmonary fibrosis (IPF) patients (n = 64) human lungs to map the entire MT change. This analysis enabled us to map all high-resolution matrix-producing cells and identify distinct subpopulations of endothelial cells (ECs) and epithelial cells as the primary cellular sources of MT clusters during COVID-19. For the first time, we have identied early and late subgroups of endothelial mesenchymal transition (EndMT) and epithelial-mesenchymal transition (EMT) using analysis of public databases for single-cell sequencing. We assessed epithelial subgroups by age, smoking status, and gender, and the data suggest that the proportional changes in EMT in COVID-19 are statistically significant. Further enumeration of early and late EMT suggests a correlation between invasive genes and COVID-19. Finally, EndMT is upregulated in COVID-19 patients and enriched for more inflammatory cytokines. Further, by classifying EndMT as early or late stages, we found that early EndMT was positively correlated with entry factors but this was not true for late EndMT. Exploring the MT state of may help to mitigate the fibrosis impact of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Epithelial-Mesenchymal Transition , Cytokines , Endothelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Fibrosis , Humans , Pandemics , SARS-CoV-2 , Signal Transduction
3.
Front Med (Lausanne) ; 9: 944909, 2022.
Article in English | MEDLINE | ID: covidwho-2109784

ABSTRACT

Background: The continued 'evolution' of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of the Omicron variant after the Delta variant, resulting in a significant increase in the number of people with COVID-19. This increase in the number of cases continues to have a significant impact on lives. Therefore, a more detailed understanding of the clinical characteristics of Omicron infection is essential. Methods: Using medical charts, we extracted clinical information for 384 patients infected with the Omicron variant in Anyang City, Henan Province, China. Epidemiology and clinical characteristics were compared with a cohort of people infected with the Delta variant in Zhengzhou in 2021. Findings: Common initial symptoms at onset of illness were cough [240 (63%)], expectoration [112 (29%)], fever [96 (25%)], nasal congestion [96 (25%)] and myalgia or fatigue [30 (6%)]. In patients with the Omicron variant, levels of total cholesterol, low-density lipoprotein and creatinine increased in 52 (14%), 36 (9%) and 58 (15%) patients, respectively, compared with patients with the Delta variant [one (1%), one (1%) and two (2%)]. Levels of triglyceride and high-density lipoprotein also increased. In patients with the Omicron variant, the levels of specific gravity and the erythrocyte sedimentation rate were increased in 115 (30%) and 81 (21%) patients, and serum levels of complement 3 decreased in 93 (41%). Results: Compared with patients infected with Delta, no major differences in initial clinical symptoms were identified in patients infected with Omicron. However, dyslipidemia and kidney injury were much more severe in patients with the Omicron variant, and the erythrocyte sedimentation rate was increased. Due to decreased levels of complement 3, the immunity of patients with the Omicron variant was weak.

4.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2092672

ABSTRACT

Background The continued ‘evolution’ of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of the Omicron variant after the Delta variant, resulting in a significant increase in the number of people with COVID-19. This increase in the number of cases continues to have a significant impact on lives. Therefore, a more detailed understanding of the clinical characteristics of Omicron infection is essential. Methods Using medical charts, we extracted clinical information for 384 patients infected with the Omicron variant in Anyang City, Henan Province, China. Epidemiology and clinical characteristics were compared with a cohort of people infected with the Delta variant in Zhengzhou in 2021. Findings Common initial symptoms at onset of illness were cough [240 (63%)], expectoration [112 (29%)], fever [96 (25%)], nasal congestion [96 (25%)] and myalgia or fatigue [30 (6%)]. In patients with the Omicron variant, levels of total cholesterol, low-density lipoprotein and creatinine increased in 52 (14%), 36 (9%) and 58 (15%) patients, respectively, compared with patients with the Delta variant [one (1%), one (1%) and two (2%)]. Levels of triglyceride and high-density lipoprotein also increased. In patients with the Omicron variant, the levels of specific gravity and the erythrocyte sedimentation rate were increased in 115 (30%) and 81 (21%) patients, and serum levels of complement 3 decreased in 93 (41%). Results Compared with patients infected with Delta, no major differences in initial clinical symptoms were identified in patients infected with Omicron. However, dyslipidemia and kidney injury were much more severe in patients with the Omicron variant, and the erythrocyte sedimentation rate was increased. Due to decreased levels of complement 3, the immunity of patients with the Omicron variant was weak.

5.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2074008

ABSTRACT

COVID-19 prognoses suggests that a proportion of patients develop fibrosis, but there is no evidence to indicate whether patients have progression of mesenchymal transition (MT) in the lungs. The role of MT during the COVID-19 pandemic remains poorly understood. Using single-cell RNA sequencing, we profiled the transcriptomes of cells from the lungs of healthy individuals (n = 45), COVID-19 patients (n = 58), and idiopathic pulmonary fibrosis (IPF) patients (n = 64) human lungs to map the entire MT change. This analysis enabled us to map all high-resolution matrix-producing cells and identify distinct subpopulations of endothelial cells (ECs) and epithelial cells as the primary cellular sources of MT clusters during COVID-19. For the first time, we have identied early and late subgroups of endothelial mesenchymal transition (EndMT) and epithelial-mesenchymal transition (EMT) using analysis of public databases for single-cell sequencing. We assessed epithelial subgroups by age, smoking status, and gender, and the data suggest that the proportional changes in EMT in COVID-19 are statistically significant. Further enumeration of early and late EMT suggests a correlation between invasive genes and COVID-19. Finally, EndMT is upregulated in COVID-19 patients and enriched for more inflammatory cytokines. Further, by classifying EndMT as early or late stages, we found that early EndMT was positively correlated with entry factors but this was not true for late EndMT. Exploring the MT state of may help to mitigate the fibrosis impact of SARS-CoV-2 infection.

6.
Antibodies (Basel) ; 10(4)2021 Nov 04.
Article in English | MEDLINE | ID: covidwho-1595331

ABSTRACT

Monoclonal antibodies (mAbs) are one of the cornerstones of modern medicine, across an increasing range of therapeutic areas. All therapeutic mAbs are glycoproteins, i.e., their polypeptide chain is decorated with glycans, oligosaccharides of extraordinary structural diversity. The presence, absence, and composition of these glycans can have a profound effect on the pharmacodynamic and pharmacokinetic profile of individual mAbs. Approaches for the glycoengineering of therapeutic mAbs-the manipulation and optimisation of mAb glycan structures-are therefore of great interest from a technological, therapeutic, and regulatory perspective. In this review, we provide a brief introduction to the effects of glycosylation on the biological and pharmacological functions of the five classes of immunoglobulins (IgG, IgE, IgA, IgM and IgD) that form the backbone of all current clinical and experimental mAbs, including an overview of common mAb expression systems. We review selected examples for the use of small molecule inhibitors of glycan biosynthesis for mAb glycoengineering, we discuss the potential advantages and challenges of this approach, and we outline potential future applications. The main aim of the review is to showcase the expanding chemical toolbox that is becoming available for mAb glycoengineering to the biology and biotechnology community.

7.
Biol Proced Online ; 23(1): 16, 2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1371952

ABSTRACT

BACKGROUND: The Interaction between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with Angiotensin converting enzyme 2 (ACE2) on the host cells is a crucial step for the viral entry and infection. Therefore, investigating the molecular mechanism underlying the interaction is of great importance for the prevention of the infection of SARS-CoV-2. In this study, we aimed to establish a virus-free in vitro system to study the interaction between the spike protein and host cells of SARS-CoV-2. RESULTS: Our results show that ACE2-overexpressing HEK293T cells are captured by immobilized spike S1 protein, and the cell capturing process can be inhibited by the receptor binding domain of the spike protein or antibodies against S protein. Furthermore, spike S1 protein variant with D614G mutant show a higher cell capturing ability than wild type spike S1 protein and stronger binding capacity of its receptor ACE2. In addition, the captured cells can be eluted as living cells for further investigation. CONCLUSIONS: This study provides a new in vitro system for investigating the interaction between SARS-CoV-2 and host cells and purifying ACE2-expressing cells.

8.
Brief Bioinform ; 22(2): 1378-1386, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1352117

ABSTRACT

Antiviral therapies targeting the pandemic coronavirus disease 2019 (COVID-19) are urgently required. We studied an already-approved botanical drug cepharanthine (CEP) in a cell culture model of GX_P2V, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related virus. RNA-sequencing results showed the virus perturbed the expression of multiple genes including those associated with cellular stress responses such as endoplasmic reticulum (ER) stress and heat shock factor 1 (HSF1)-mediated heat shock response, of which heat shock response-related genes and pathways were at the core. CEP was potent to reverse most dysregulated genes and pathways in infected cells including ER stress/unfolded protein response and HSF1-mediated heat shock response. Additionally, single-cell transcriptomes also confirmed that genes of cellular stress responses and autophagy pathways were enriched in several peripheral blood mononuclear cells populations from COVID-19 patients. In summary, this study uncovered the transcriptome of a SARS-CoV-2-related coronavirus infection model and anti-viral activities of CEP, providing evidence for CEP as a promising therapeutic option for SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Animals , Chlorocebus aethiops , Homeostasis , Humans , Vero Cells
9.
Acta Pharmacol Sin ; 43(4): 771-780, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1315591

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can induce acute inflammatory response like acute lung inflammation (ALI) or acute respiratory distress syndrome, leading to severe progression and mortality. Therapeutics for treatment of SARS-CoV-2-triggered respiratory inflammation are urgent to be discovered. Our previous study shows that Salvianolic acid C potently inhibits SARS-CoV-2 infection. In this study, we investigated the antiviral effects of a Salvia miltiorrhiza compound, Danshensu, in vitro and in vivo, including the mechanism of S protein-mediated virus attachment and entry into target cells. In authentic and pseudo-typed virus assays in vitro, Danshensu displayed a potent antiviral activity against SARS-CoV-2 with EC50 of 0.97 µM, and potently inhibited the entry of SARS-CoV-2 S protein-pseudo-typed virus (SARS-CoV-2 S) into ACE2-overexpressed HEK-293T cells (IC50 = 0.31 µM) and Vero-E6 cell (IC50 = 4.97 µM). Mice received SARS-CoV-2 S via trachea to induce ALI, while the VSV-G treated mice served as controls. The mice were administered Danshensu (25, 50, 100 mg/kg, i.v., once) or Danshensu (25, 50, 100 mg·kg-1·d-1, oral administration, for 7 days) before SARS-CoV-2 S infection. We showed that SARS-CoV-2 S infection induced severe inflammatory cell infiltration, severely damaged lung tissue structure, highly expressed levels of inflammatory cytokines, and activated TLR4 and hyperphosphorylation of the NF-κB p65; the high expression of angiotensinogen (AGT) and low expression of ACE2 at the mRNA level in the lung tissue were also observed. Both oral and intravenous pretreatment with Danshensu dose-dependently alleviated the pathological alterations in mice infected with SARS-CoV-2 S. This study not only establishes a mouse model of pseudo-typed SARS-CoV-2 (SARS-CoV-2 S) induced ALI, but also demonstrates that Danshensu is a potential treatment for COVID-19 patients to inhibit the lung inflammatory response.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Humans , Lactates , Mice , Spike Glycoprotein, Coronavirus
10.
Case Rep Womens Health ; 31: e00321, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1213126

ABSTRACT

The effects of SARS-CoV-2 infection in the first trimester on the pregnant woman and the fetus remain unclear. We describe the complete follow-up of a pregnant woman with asymptomatic SARS-CoV-2 infection in the first trimester. The woman tested positive for SARS-CoV-2 viral RNA in nasopharyngeal swabs in her seventh week of gestation and was admitted to a local hospital for treatment. Although the woman had a BMI above 28 and a total gestational weight gain of 21 kg, no pregnancy complications or severe complications related to SARS-CoV-2 were reported. An ultrasound scan identified no fetal abnormalities at 22 weeks. The pregnancy ended at term (37 weeks), and the newborn's birth weight was 3100 g. Placental insufficiency was revealed by placental histology examination but this appeared not to be related to the SARS-CoV-2 infection. In-situ hybridisation and immunohistochemical tests for SARS-CoV-2 RNA, spike protein 1, and nucleocapsid proteins were negative. However, ACE-2 was positive in samples of the placenta, umbilical cord and fetal membrane. The baby was followed up through to 10 days after birth and grew normally. Our results suggest that asymptomatic SARS-CoV-2 infection in the first trimester of pregnancy might not have significant harmful effects on the mother and the developing fetus. This finding may be of interest to the general public, midwives and general practitioners. However, large population studies are needed to confirm our findings.

11.
Hepatol Commun ; 4(12): 1744-1750, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1204736

ABSTRACT

A newly identified coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the infectious coronavirus disease 2019 (COVID-19), emerged in December 2019 in Wuhan, Hubei Province, China, and now poses a major threat to global public health. Previous studies have observed highly variable alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in patients with COVID-19. However, circulating levels of the cholangiocyte injury biomarker gamma-glutamyltransferase (GGT) have yet to be reported in the existing COVID-19 case studies. Herein, we describe the relationship between GGT levels and clinical and biochemical characteristics of patients with COVID-19. Our study is a retrospective case series of 98 consecutive hospitalized patients with confirmed COVID-19 at Wenzhou Central Hospital in Wenzhou, China, from January 17 to February 5, 2020. Clinical data were collected using a standardized case report form. Diagnosis of COVID-19 was assessed by symptomatology, reverse-transcription polymerase chain reaction (RT-PCR), and computed tomography scan. The medical records of patients were analyzed by the research team. Of the 98 patients evaluated, elevated GGT levels were observed in 32.7%; increased C-reactive protein (CRP) and elevated ALT and AST levels were observed in 22.5%, 13.3%, and 20.4%, respectively; and elevated alkaline phosphatase (ALP) and triglycerides (TGs) were found in 2% and 21.4%, respectively. Initially, in the 82 patients without chronic liver disease and alcohol history, age older than 40 years (P = 0.027); male sex (P = 0.0145); elevated CRP (P = 0.0366), ALT (P < 0.0001), and ALP (P = 0.0003); and increased TGs (P = 0.0002) were found to be associated with elevated GGT levels. Elevated GGT (P = 0.0086) and CRP (P = 0.0162) levels had a longer length of hospital stay. Conclusion: A sizable number of patients with COVID-19 infection have elevated serum GGT levels. This elevation supports involvement of the liver in persons with COVID-19.

12.
Aging (Albany NY) ; 13(7): 9265-9276, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1156226

ABSTRACT

BACKGROUND: Dysregulated immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are thought to underlie the progression of coronavirus disease 2019 (COVID-19). We sought to further characterize host antiviral and cytokine gene expression in COVID-19 patients based on illness severity. METHODS: In this case-control study, we retrospectively analyzed 46 recovered COVID-19 patients and 24 healthy subjects (no history of COVID-19) recruited from the Second People's Hospital of Fuyang City. Blood samples were collected from each study participant for RNA extraction and PCR. We assessed changes in antiviral gene expression between healthy controls and patients with mild/moderate (MM) and severe/critical (SC) disease. RESULTS: We found that type I interferon signaling (IFNA2, TLR8, IFNA1, IFNAR1, TLR9, IRF7, ISG15, APOBEC3G, and MX1) and genes encoding proinflammatory cytokines (IL12B, IL15, IL6, IL12A and IL1B) and chemokines (CXCL9, CXCL11 and CXCL10) were upregulated in patients with MM and SC disease. Moreover, we found that IFNA1, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (APOBEC3G), and Fas-associated protein with death domain (FADD) were significantly downregulated (P < 0.05) in the SC group compared to the MM group. We also observed that microRNA (miR)-155 and miR-130a levels were markedly higher in the MM group compared to the SC group. CONCLUSION: COVID-19 is associated with the activation of host antiviral genes. Induction of the IFN system appears to be particularly important in controlling SARS-CoV-2 infection, as decreased expression of IFNA1, APOBEC3G and FADD genes in SC patients, relative to MM patients, may be associated with disease progression.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Immunity, Innate , SARS-CoV-2/immunology , APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/immunology , Adult , Aged , Case-Control Studies , Cytokines/genetics , Cytokines/immunology , Female , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Transcriptome , Up-Regulation
13.
Pathogens ; 9(5)2020 May 11.
Article in English | MEDLINE | ID: covidwho-664436

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.

14.
Medicine (Baltimore) ; 100(3): e24169, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1082568

ABSTRACT

BACKGROUND: Since its first report in December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly emerged as a pandemic affecting nearly all countries worldwide. So far, there is no specific anti-coronavirus therapy approved for the treatment of COVID-19. In China, some traditional Chinese medicines (TCM) have been successfully applied to the treatment of SARS-CoV-2 and have achieved good clinical results, including the Reyanning mixture, but there is no systematic review about it. This study will systematically evaluate its efficacy and safety in the treatment of COVID-19. METHODS: The following electronic bibliographic databases will be searched to identify relevant studies: PubMed, MEDLINE, EMBASE, CNKI, CBM, and Wanfang databases. We will use the Cochrane Handbook for Systematic Reviews of Interventions to assess the risk of bias. The protocol will be conducted according to the approach and Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). Manager 5.3 software and STATA 16.0 software were used to perform the meta-analysis. RESULTS: The systematic review and meta-analysis aims to review and pool current clinical outcomes of Reyanning mixture for the treatment of COVID-19. CONCLUSION: The conclusion of this review will provide evidence to judge whether Reyanning mixture combined with Conventional Western Medicine is an effective and safe intervention for COVID-19. INPLASY REGISTRATION NUMBER: INPLASY2020120044.


Subject(s)
COVID-19 Drug Treatment , COVID-19/therapy , Medicine, Chinese Traditional , Humans
15.
Medicine (Baltimore) ; 100(2): e24204, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-1066473

ABSTRACT

BACKGROUND: Since the outbreak of coronavirus disease 2019 (COVID-19) in 2019, it has swept the world with rapid development and is one of the infectious diseases that seriously threatened global public health. Because of the complex pathogenesis, high infectivity, and high fatality rate of COVID-19, there are no effective treatments for this epidemic at present. Traditional Chinese Medicine (TCM) has a long clinical history in the prevention and treatment of such acute infectious diseases. The therapeutic effect of Lianhua Qingwen (LHQW) on this new coronary pneumonia has attracted the attention of all walks of life, and relevant research reports continue to appear. Here, we intend to conduct a systematic review and meta-analysis of randomized controlled trials (RCT) to evaluate the efficacy of LHQW in COVID-19 patients. METHODS: We will search each database from the built-in until Dec 2020. The English literature mainly search the Cochrane Library, EMBASE, PubMed, and Web of Science, while the Chinese literature come from CNKI, VIP, Chinese Biomedical Database (CBM), Chinese Science Citation Database (CSCD), and Wan Fang database. Simultaneously, we will retrieve clinical registration tests. This study only screens the RCT of LHQW against COVID-19 and evaluates its efficacy and safety. We will use the Cochrane Handbook to systematically review interventions to assess the risk of bias. The protocol will be reported according to the approach and preferred report items for systematic review and meta-analysis protocols (PRISMA - P). Finally, RevMan software version 5.3 will be used for meta-analysis. RESULTS: The systematic review and meta-analysis aim to review and pool current clinical outcomes of LHQW for treating COVID-19. CONCLUSION: This study will provide further evidence for the efficacy and safety of LHQW in the treatment of COVID-19. INPLASY REGISTRATION NUMBER: INPLASY2020120043.


Subject(s)
COVID-19/therapy , Medicine, Chinese Traditional , Meta-Analysis as Topic , Systematic Reviews as Topic , Humans , Randomized Controlled Trials as Topic , Research Design
16.
Medicine (Baltimore) ; 100(3): e24129, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1066470

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a new acute espiratory infectious disease that has been in a public health emergency of international concern. In China, the combination of Xuanfei Baidu Formula (XBF) and conventional drug is used in the clinical treatment of patients with new coronary pneumonia, However, there is no comprehensive and systematic evidence on the effectiveness and safety of XBF. MATERIALS AND METHODS: We search for research in PubMed, China National Knowledge Infrastructure, Wan-fang Database, China Biomedical Database, and Chinese Science Citation Database. For "Xuanfei Baidu Formula" and "COVID-19," we screened suitable articles without language restrictions on keywords, Review Manager 5.3 and STATA 14.2 software was used for the data analysis. RESULTS: The systematic review and meta-analysis will evaluate the efficacy and safety of XBF combined with conventional drug in the treatment of COVID-19. CONCLUSION: We will provide evidence of XBF for the treatment on COVID-19 patients. INPLASY REGISTRATION NUMBER: INPLASY2020120011.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Humans
18.
Medicine (Baltimore) ; 99(38): e22277, 2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-787429

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a potentially fatal disease. clinical practice shows that Chinese Patent Medicine (CPM) has played an important role in the outbreak, Among them, Jinhua Qinggan granules, Lianhua Qingwen capsule, and Xuebiqing injection have an effect in treating COVID-19 patients, but it has not been systematically evaluated for efficacy and safety. We provide a protocol for systematic review and meta-analysis. MATERIALS AND METHODS: Retrieved the database, including the China National Knowledge Infrastructure, Chinese Biomedical Database, Wan Fang database, and PubMed. The quality of each study is assessed according to the criteria of the Cochrane Handbook for Systematic Reviews of Interventions. Using Manager 5.3 software and STATA 16.0 software were used to perform the meta-analysis. RESULTS: The systematic review and meta-analysis aims to review and pool current clinical outcomes of CPM combined with routine western medicine (RWM) for the treatment of COVID-19. CONCLUSION: This study will provide evidence of CPM (including Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebiqing injection) for the treatment on COVID-19 patients.INPLASY Registration number: INPLASY202050050.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/therapeutic use , Pneumonia, Viral/drug therapy , COVID-19 , Coronavirus Infections/virology , Humans , Meta-Analysis as Topic , Pandemics , Pneumonia, Viral/virology , Research Design , SARS-CoV-2 , Systematic Reviews as Topic , Treatment Outcome , COVID-19 Drug Treatment
19.
Med Microbiol Immunol ; 209(6): 657-668, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-734093

ABSTRACT

The magnitude of SARS-CoV-2 infection, the dynamic changes of immune parameters in patients with the novel coronavirus disease (COVID-19) and their correlation with the disease severity remain unclear. The clinical and laboratory results from 154 confirmed COVID-19 patients were collected. The SARS-CoV-2 RNA levels in patients were estimated using the Ct values of specific RT-PCR tests. The lymphocyte subsets and cytokine profiles in the peripheral blood were analyzed by flow cytometry and specific immunoassays. 154 confirmed COVID-19 patients were clinically examined up to 4 weeks after admission. The initial SARS-CoV-2 RNA Ct values at admission varied, but were comparable in the patient groups classified according to the age, gender, underlying diseases, and disease severity. Three days after admission, significant higher Ct values were found in severe cases. Significantly reduced counts of T cells and T cell subsets were found in patients with old age and underlying diseases at admission and were characteristic for the development of severe COVID-19. Severe COVID-19 developed preferentially in patients with underlying compromised immunity and was not associated with initial virus levels. Higher SARS-CoV-2 RNA levels in severe cases were apparently a result of impaired immune control associated with dysregulation of inflammation.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , RNA, Viral/analysis , T-Lymphocytes/immunology , Adult , Aged , Betacoronavirus/immunology , Biomarkers/blood , COVID-19 , China/epidemiology , Cohort Studies , Coronavirus Infections/blood , Female , Humans , Inflammation Mediators/blood , Lymphocyte Count , Lymphocyte Subsets , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Prognosis , RNA, Viral/genetics , Retrospective Studies , SARS-CoV-2 , Viral Load
20.
Aging (Albany NY) ; 12(14): 13895-13904, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-690747

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a novel infectious disease that may cause fever, dry cough, fatigue and shortness of breath. The impact of COVID-19 on liver function is not well described. RESULTS: We found that the overall frequency of LFT abnormality was 17.6%. Frequency of LFT abnormality was significantly greater in patients with severe/critical (SC) COVID-19 compared to those with mild/moderate (MM) COVID-19 (32.4% vs 11.6%, p=0.011). Among patients with LFT abnormality, the median age was significantly higher in the SC group compared to the MM group (52 vs 39 years, p=0.021). CONCLUSION: COVID-19 is frequently associated with mild liver function abnormality, particularly in individuals with severe/critical COVID-19 who were older. Liver function should be monitored carefully during infection, with judicious use of hepatotoxic agents where possible and avoidance of prolonged hypotension to minimize liver injury in older patients. METHODS: The No. 2 People's Hospital of Fuyang City in China has admitted a total of 159 patients with confirmed COVID-19 since the outbreak from January 2020 to March 2020. We analyzed the incidence of liver function test (LFT) abnormality in these patients with confirmed COVID-19 infection.


Subject(s)
Coronavirus Infections/complications , Liver Diseases/virology , Pneumonia, Viral/complications , Adult , Age Factors , Aged , Betacoronavirus , COVID-19 , China/epidemiology , Female , Humans , Incidence , Liver Diseases/epidemiology , Liver Function Tests , Male , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL